Optional Advanced Exersise SCR

You have the task to calculate the catalytic converter volume filled with a vanadium-based SCR catalyst for a biomass power plant. NO emissions of 800 mg/m³ have been measured at an exhaust gas temperature of 250°C and the NO emissions shall be reduced by 80%. For this purpose lab tests have been conducted with the catalyst and 80% NO reduction has been achieved at 250°C at a GHSV of 3000 h⁻¹. In the biomass power plant 10 t wood (dry) is burned per hour at an air excess of $\lambda = 1.8$.

Hints:

The composition of wood can be described by the formula $CH_{1.49}O_{0.67}$. Write down the reaction equation for complete combustion to CO_2 and water. Assume ideal gas behavior of all gases and calculate the volumes/volume flows at standard conditions. To this the gas volume/volume flow you have to add the volume/volume flow of uncombusted nitrogen and of the air excess. The DeNOx performance is assumed to be proportinal to the catalyst volume.

Solution Exercise SCR

Stoichiomety of combustion:

$$CH_{149}O_{0.67} + 1.0375 O_2 = CO_2 + 0.745 H_2O$$
 Hin

Hinweis: $1.0375 O_2 = (2 + 0.745 - 0.67)/2 O_2$

Combustion product gas in mol/mol wood:

1 mol CO_2 + 0.745 mol H_2O = 1.745 mol combustion product gas

Combustion gas in m^3 per mol wood at STP (1 bar, 0° C = 273.15 K):

$$\begin{array}{lll} p \cdot V = n \cdot R \cdot T & => & V_{Comb.} = 1.745 \ mol \cdot 8.3144 \ Jmol^{-1}K^{-1} \cdot 273.15 \ K \ / \ (1 \cdot 10^5 \ Pa) \\ V_{Comb.} = 1.745 \ mol \cdot 8.3144 \ kgm^2s^2 \ mol^{-1}K^{-1} \cdot 273.15 \ K \cdot 10^{-5} \ kg^{-1}ms^2 \\ V_{Comb.} = 0.03963 \ m^3 \\ \end{array}$$

Inert gas through the power plant:

Air: 79% inert gas, 21%
$$O_2$$
 $n_{inert} = 1.0375 \text{ mol} \cdot 79/21 = 3.903 \text{ mol}$

Inert gas in m³ per mol wood at STP (1 bar, 0°C = 273.15 K):

$$p \cdot V = n \cdot R \cdot T$$
 => $V_{inert} = 7.806 \text{ mol} \cdot 8.3144 \text{ Jmol}^{-1}\text{K}^{-1} \cdot 273.15 \text{ K} / (1 \cdot 10^5 \text{ Pa})$
 $V_{inert} = 0.08864 \text{ m}^3$

Additional air in the power plant at λ = 1.8:

$$V_{Excess} = V_{inert} \cdot 100/79 \cdot 0.8$$

 $V_{Excess} = 0.08864 \text{ m}^3 \cdot 100/79 \cdot 0.8 = 0.08976 \text{ m}^3$

Total gas volume per mol wood:

$$V_{total} = V_{Comb.} + V_{inert} + V_{Excess} = 0.2180 \text{ m}^3$$

Solution Exercise SCR

Gas volume for 10 t Holz pro Stunde bei Normbedingungen:

$$V_{10t} = m_{Holz}h^{-1} / Molmasse Holz \cdot V_{total}mol^{-1}$$

Molar mass wood (CH_{1.49}O_{0.67}) = $1 \cdot 12 \text{ gmol}^{-1} + 1.49 \cdot 1 \text{ gmol}^{-1} + 0.67 \cdot 16 \text{ gmol}^{-1} = 24.21 \text{ gmol}^{-1}$

$$V_{10t} = 10 \cdot 10^6 \text{ gh}^{-1} / (24.21 \text{ gmol}^{-1}) \cdot 0.2180 \text{ m}^3 \text{mol}^{-1}$$

 $V_{10t} = 90'045 \text{ m}^3 \text{h}^{-1}$

Required catalyst volume for 80% reduction:

$$V_{cat.} = V_{10t} / GHSV$$

 $V_{cat.} = 90'045 \text{ m}^3\text{h}^{-1} / 3000 \text{ h}^{-1} = 30.0 \text{ m}^3$

